

2-(o-Tolyl)-4,4-dimethyl-2-oxazolines - A New Vehicle for Facile Convergent Synthesis of Protoberberine Alkaloids

Kamal Nain Singh
Department of Chemistry, Guru Nanak Dev University, Amritsar - 143 005.

Received 24 February 1998; revised 2 April 1998; accepted 8 April 1998

Abstract: A single step synthesis of 8-oxotetrahydroprotoberberines (57-82%) by the addition of lithiated 2-(o-tolyl)-4,4-dimethyl-2-oxazolines on 3.4-dihydroiso-quinolines is described. © 1998 Elsevier Science Ltd. All rights reserved.

The antiinflamatory, antimicrobial, antileukemic and antitumor properties¹ of protoberberine alkaloids - tetracyclic systems with an isoquinoline core, have led to considerable efforts in development of their synthetic methodologies. The synthetic approaches available in literature are generally plagued by non-availability of starting materials, non-regiospecific synthesis, multistep procedures and moderate to poor yields².

A retrosynthetic analysis (scheme - 1) reveals that the sequential cleavage of N7-C8 and C13-C13a bonds gives 3,4-dihydroisoquinoline (**m**) and o-substituted aryl ring with one electrophilic and one nucleophilic centre (**n**). We envisaged that the presence of 2-oxazoline unit on toluene at o- position would not only facilitate the generation of benzylic anion but also facilitate the intramolecular cyclisation of the intermediate addition product to provide protoberberine skelton in a single step. Here we report that 2-(o-tolyl)-4,4-dimethyl-2-oxazolines (1) on lithiation at 0°C undergo addition on 3,4-dihydroisoquinolines (3) to provide 6 and subsequent reductions with LAH give protoberberine alkaloids 7 (57-78%).

Treatment of **1a** with n-butyl lithium in ether at 0°C for 30 min results in the formation of a deep red coloured anion, which on addition of 3,4-dihydroisoquinoline (**3a**) and subsequent acidic work-up provides **6a** (78%), m.p. 166-68 (lit.³ m.p.169-70°C)⁷, MS m/z 249(M⁺, 68). This reaction mixture on NH₄Cl work-up and purification over NEt₃ deactivated silicagel provides **5** (R = R₁ = R₂ = H), MS m/z 320

(M', 1). Its ¹H nmr exhibits C-13aH at δ 4.26, along with other signals due to protoberberine and aminoalcohol units. On addition of D₂O and keeping the sample overnight, the signal due to C-13aH shifts to δ 4.90 the normal position for 6a. These results show that 2a adds to 3a to give intermediate 4 which subsequently adds to oxazoline C=N to give 5 and during acidic work-up is hydrolysed to provide 6a. Therefore, addition of 2a on 3a provides a single step synthesis of (\pm) 8-oxoprotoberberine 6a (78%).

Reaction conditions (i) n-BuLi -Et $_2$ O, 0°C, 30 min. (ii) 0°C, 30min, RT 12h (iii) EtOH-H $_2$ SO $_4$, stir 30 min.(iv) LiAlH $_4$ - THF, reflux, 2h

Scheme - 2

Similarly, the addition of anion derived from 1a with 3b and 1b with 3b and 3c provide respectively alkaloids 6b (82%), m.p. 143-44 (lit.⁴ m.p. 143-45°C), MS m/z 309(M⁺,100); 6c (58%), m.p.187-88 (lit.⁴ m.p. 188-89°C), MS m/z 369(M⁺, 48) and 6d (78%), m.p. 152-54°C, MS m/z 385(M⁺, 31). The compounds 6b and 6c on reduction with LAH and 6d on reduction with LAH and subsequent debenzylation with EtOH - HCl provide respective alkaloids 7b (68%), m.p.HCl 236-37 (lit.⁶ mp 236-38°C), MS m/z 295 (M⁻, 29); 7c ((±)xylopinine, 76%), m.p.141-42 (lit.⁴ mp. 142-43°C), MS m/z 355 (M⁺, 35) and 7e ((±)bharatamine, 65%), m.p. 180-82 (lit.⁵ m.p. 182-83°C), MS m/z 281 (M⁺, 100).

Thus, 2-(o-tolyl)-4,4-dimethyl-2-oxazolines (1) are excellent vehicles for the convergent synthesis of protoberberine alkaloids where benzylic anions are generated at a more practicable ice bath temperature and both addition and cyclisation steps are acheived in a concerted manner. The use of easily available chiral oxazoline rings in 1 may provide a facile enantioselective synthesis.

Acknowledgement: We thank CSIR (New Delhi) for financial assistance. **References:**

- 1. Memetzidis, G.; Stambach, J. F.; Jung, L.; Schott, C.; Heitz, C.; Stoclet, J. C. Eur. J. Med. Chem. 1991, 26, 605.
- 2. (a) Bhakuni, D.S.; Jain, S. in "The Alkaloids" Ed. A. Brossi, Vol 28, p 95 (1986). Academic Press. London. (b) Matulenko, M.A.; Meyers, A. I. J. Org. Chem., 1996, 61, 573.
- 3. Natsume, M.: Tanabe, R.: Ilsuu Kenkyusho Nempo 1968, 15, 21. (Chcm. Abst. 1969, 71, 124746).
- 4. Lenz, G. R. J. Org. Chem., 1974, 39, 2846.
- 5. Pakrashi, S. C.; Mukhopadhyay, R.; Gosh, D. P. P.; Bhattacharyya, A.; Ali, E. Tetrahedron Lett. 1983, 24, 291.
- 6. Huffman, J. W.; Miller, E. C. J. Org. Chem., 1960, 25, 90.
- 7. The compounds 6 and 7 have been adequately characterised by ¹H nmr, mass and ir spectral data.